Aqueous Ligand-Stabilized Palladium Nanoparticle Catalysts for Parahydrogen-Induced 13C Hyperpolarization.

نویسندگان

  • Jeffrey McCormick
  • Alexander M Grunfeld
  • Yavuz N Ertas
  • Akash N Biswas
  • Kristofer L Marsh
  • Shawn Wagner
  • Stefan Glöggler
  • Louis-S Bouchard
چکیده

Parahydrogen-induced polarization (PHIP) is a method for enhancing NMR sensitivity. The pairwise addition of parahydrogen in aqueous media by heterogeneous catalysts can lead to applications in chemical and biological systems. Polarization enhancement can be transferred from 1H to 13C for longer lifetimes by using zero field cycling. In this work, water-dispersible N-acetylcysteine- and l-cysteine-stabilized palladium nanoparticles are introduced, and carbon polarizations up to 2 orders of magnitude higher than in previous aqueous heterogeneous PHIP systems are presented. P13C values of 1.2 and 0.2% are achieved for the formation of hydroxyethyl propionate from hydroxyethyl acrylate and ethyl acetate from vinyl acetate, respectively. Both nanoparticle systems are easily synthesized in open air, and TEM indicates an average size of 2.4 ± 0.6 nm for NAC@Pd and 2.5 ± 0.8 nm for LCys@Pd nanoparticles with 40 and 25% ligand coverage determined by thermogravimetric analysis, respectively. As a step toward biological relevance, results are presented for the unprotected amino acid allylglycine upon aqueous hydrogenation of propargylglycine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, Characterization and Catalytic Activity of Ligand Stabilized Palladium Nanoparticle: A Catalyst Compliment to the Heck Coupling Reaction

The palladium metal is the most frequently used metal because of its excellent catalytic efficiency and most flexible varying oxidation state. So,  we report  that palladium nanoparticles (Pd NPs) stabilized by a ligand (o-vanilindiphenylethanedionedihydrazone, L)  using reverse micelles method have been synthesized, while all particles are in spherical shape and ranging between 10 and...

متن کامل

Molecular ligand modulation of palladium nanocatalysts for highly efficient and robust heterogeneous oxidation of cyclohexenone to phenol

Metallic nanoparticles are emerging as an exciting class of heterogeneous catalysts with the potential advantages of exceptional activity, stability, recyclability, and easier separation than homogeneous catalysts. The traditional colloid nanoparticle syntheses usually involve strong surface binding ligands that could passivate the surface active sites and result in poor catalytic activity. The...

متن کامل

Surface ligand-directed pair-wise hydrogenation for heterogeneous phase hyperpolarization.

para-Hydrogen induced polarization is a technique of magnetic resonance hyperpolarization utilizing hydrogen's para-spin state for generating signal intensities at magnitudes far greater than state-of-the-art magnets. Platinum nanoparticle-catalysts with cysteine-capping are presented. The measured polarization is the highest reported to date in water, paving pathways for generating medical ima...

متن کامل

Synthesis and hydrogenation application of Pt–Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer

Different generations of poly(propylene imine) (G n -PPI) terminated with N-containing 15-membered triolefinic macrocycle (G n M) (n = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts G n M-(Pt x /Pd10-x ) (x = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between G n M and the complexes of Pt(PPh3)4 and Pd(PPh3)4. The structure and catalytic properti...

متن کامل

15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 89 13  شماره 

صفحات  -

تاریخ انتشار 2017